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Intent Classification

Goals:

▪ Work / Play Classification 
based on URL and App data

▪ Smarter OS as a result of 
information sharing between 
the Apps: Next Session Type 
and Start Time prediction

▪ Anomaly Detection

Proposed Model:
▪ Multi-Modal Neural Network

MLP

LSTM w/
FastText

Embeddings

Concat MLP

URLs

Apps

work /
play

▪ Advantages:
➢ Scalable to multiple input branches and 

multiple modalities (e.g. images, text)
➢ Input branches are designed 

independently but trained jointly



Data Exploration

URL data

▪ 1.5M rows, 15 categories

▪ Example (uninformative):

original link: 
https://www.google.com/search?q=test&oq=test&aqs=chrome..
69i57j0l5.947j0j8&sourceid=chrome&ie=UTF-8

tokenized link: 
['google', 'search', 'test', 'test', 'aqs', 'chrome', 'sourceid', 'chrome', 'UTF']

▪ Example (informative):

original link: 
https://www.theverge.com/2019/7/1/20676939/nasa-orion-
crew-capsule-launch-abort-system-test-emergency

tokenized link: 
['theverge', 'nasa', 'orion', 'crew', 'capsule', 'launch', 'abort', 'system', 'test', 'emergency']

work play

URL categories

URL 
counts

https://www.google.com/search?q=test&oq=test&aqs=chrome..69i57j0l5.947j0j8&sourceid=chrome&ie=UTF-8
https://www.theverge.com/2019/7/1/20676939/nasa-orion-crew-capsule-launch-abort-system-test-emergency


Data Exploration

App data

▪ 1.8M rows, 20K Apps

▪ Based on App Interactivity dataset from 
cosmos database (commercial vs non-
commercial apps) 

▪ App data is one-hot encoded (same Hamming 
distance between apps)

▪ Can be ambiguous: 1355 / 20K Apps are 
labelled both (w)ork and (p)lay (at different 
times).

svchost.exe

MicrosoftEdgeCP.exe

conhost.exe
Code.exe



User Sessions

Fixed Session Length

B: Count BasedA: Majority Vote

Q1: What is current session type and start-time?
Q2: What is expected next session type and start-time?



User Sessions

Variable Session Length

A: Switching Random (Poisson) Process

Q: How to predict / learn session duration?

B: Non-homogenous Poisson Process

▪ Rate lambda is a function of time: 



Experimental Results

Intent Classification (real dataset)

Flat validation loss = no signs of 
overfitting

Validation Accuracy is 72% Learning rate schedule divides 
the rate by 2 every 4 epochs



Experimental Results

Intent Classification (real dataset)

Legend:
0: play
1: work

Accuracy:Label = 0 Label = 1



Experimental Results

Session Length Prediction:

MLE 
estimate 
derivation:



Experimental Results

Session Type Prediction:

Markov Chain
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