Intent Classification

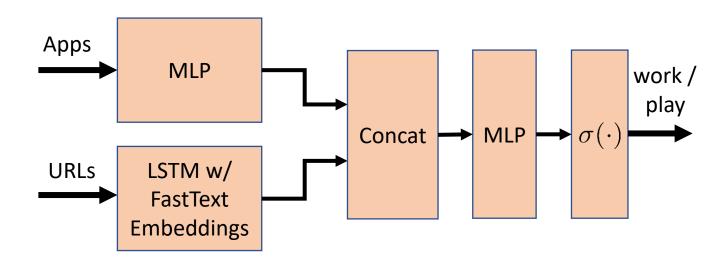
Intent Classification

Goals:

- Work / Play Classification based on URL and App data
- Smarter OS as a result of information sharing between the Apps: Next Session Type and Start Time prediction
- Anomaly Detection

Proposed Model:

Multi-Modal Neural Network



Advantages:

- Scalable to multiple input branches and multiple modalities (e.g. images, text)
- Input branches are designed independently but trained jointly

Data Exploration

URL data

- 1.5M rows, 15 categories
- Example (informative):

original link:

https://www.theverge.com/2019/7/1/20676939/nasa-orioncrew-capsule-launch-abort-system-test-emergency

tokenized link:

['theverge', 'nasa', 'orion', 'crew', 'capsule', 'launch', 'abort', 'system', 'test', 'emergency']

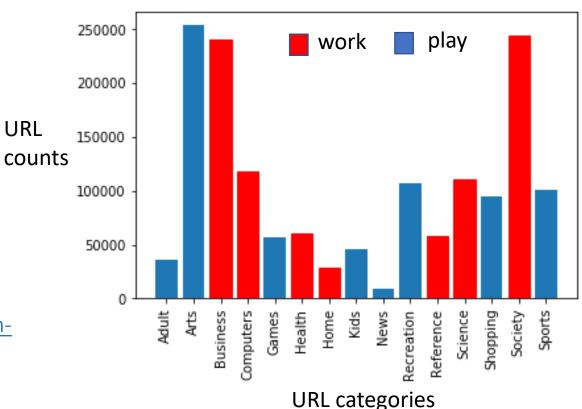
Example (uninformative):

original link:

https://www.google.com/search?q=test&oq=test&aqs=chrome... 69i57j0l5.947j0j8&sourceid=chrome&ie=UTF-8

tokenized link:

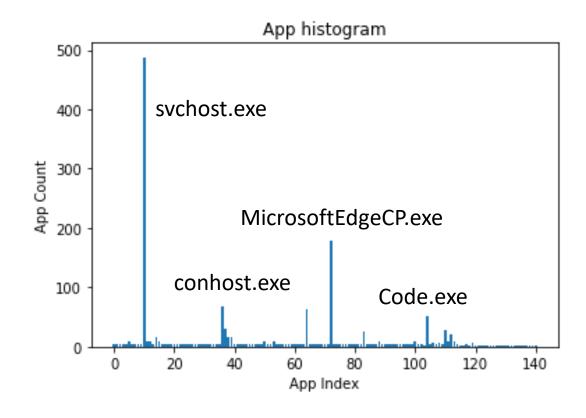
['google', 'search', 'test', 'test', 'aqs', 'chrome', 'sourceid', 'chrome', 'UTF']



Data Exploration

App data

- 1.8M rows, 20K Apps
- Based on App Interactivity dataset from cosmos database (commercial vs noncommercial apps)
- App data is one-hot encoded (same Hamming distance between apps)
- Can be ambiguous: 1355 / 20K Apps are labelled both (w)ork and (p)lay (at different times).

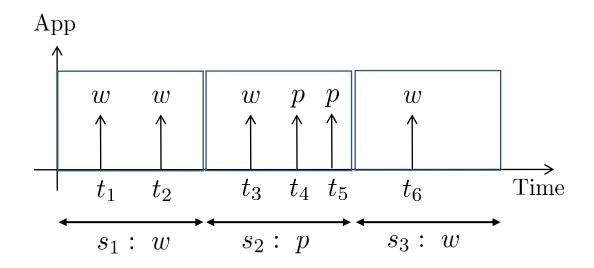


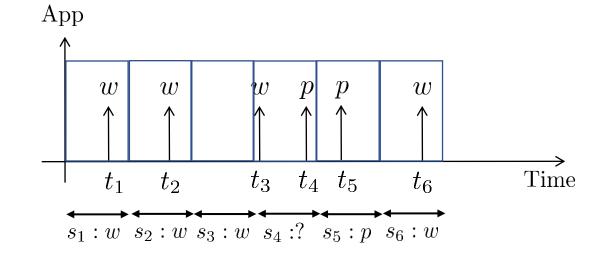
User Sessions

Fixed Session Length

Q1: What is *current* session type and start-time?

Q2: What is expected *next* session type and start-time?





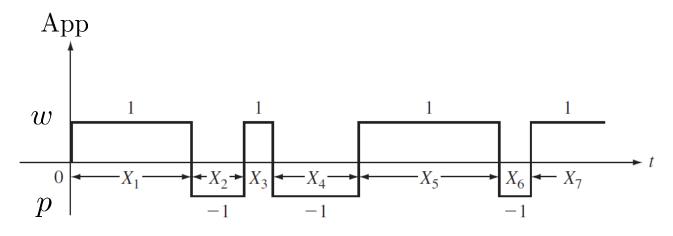
A: Majority Vote

B: Count Based

User Sessions

Variable Session Length

Q: How to predict / learn session duration?



A: Switching Random (Poisson) Process

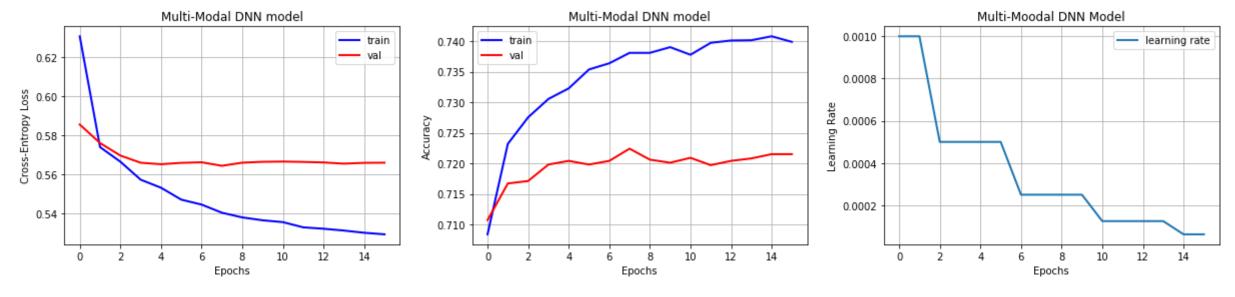
Poiss
$$(\lambda; k, t) = \frac{(\lambda t)^k}{k!} \exp\{-\lambda t\}$$

 $X_i \sim \text{Exp}(\lambda) = \lambda \exp\{-\lambda x\}$

B: Non-homogenous Poisson Process

lacktriangle Rate lambda is a function of time: $\lambda(t)$

Intent Classification (real dataset)

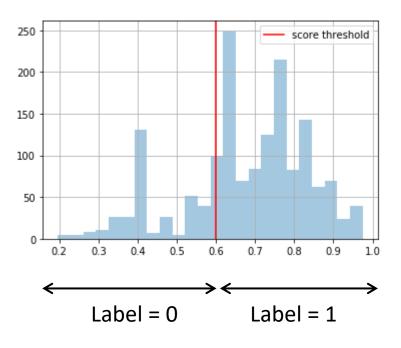


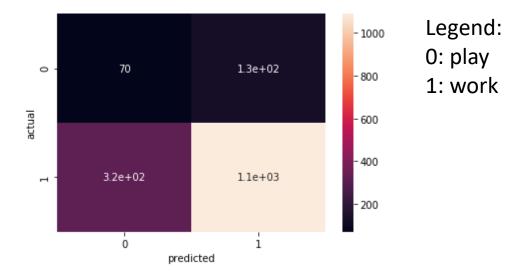
Flat validation loss = no signs of overfitting

Validation Accuracy is 72%

Learning rate schedule divides the rate by 2 every 4 epochs

Intent Classification (real dataset)

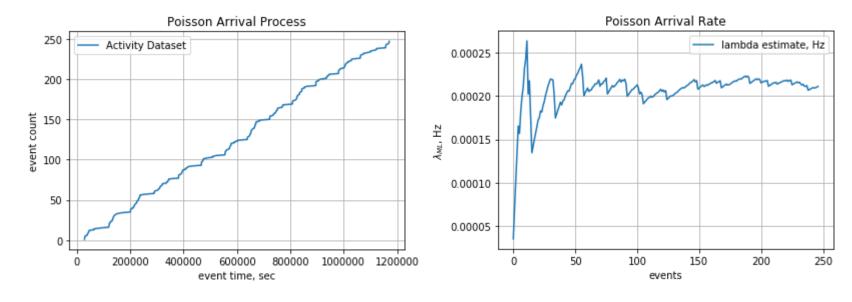




Accuracy:

$$\frac{\text{Tr}(A)}{e^T A e} = \frac{70 + 1100}{70 + 130 + 1100 + 320} = 0.72$$

Session Length Prediction:



MLE estimate derivation:

$$p(x_{1},...,x_{n};\lambda) = \prod_{i=1}^{n} \lambda \exp\{-\lambda x_{i}\} = \lambda^{n} \exp\{-\lambda \sum_{i=1}^{n} x_{i}\}$$

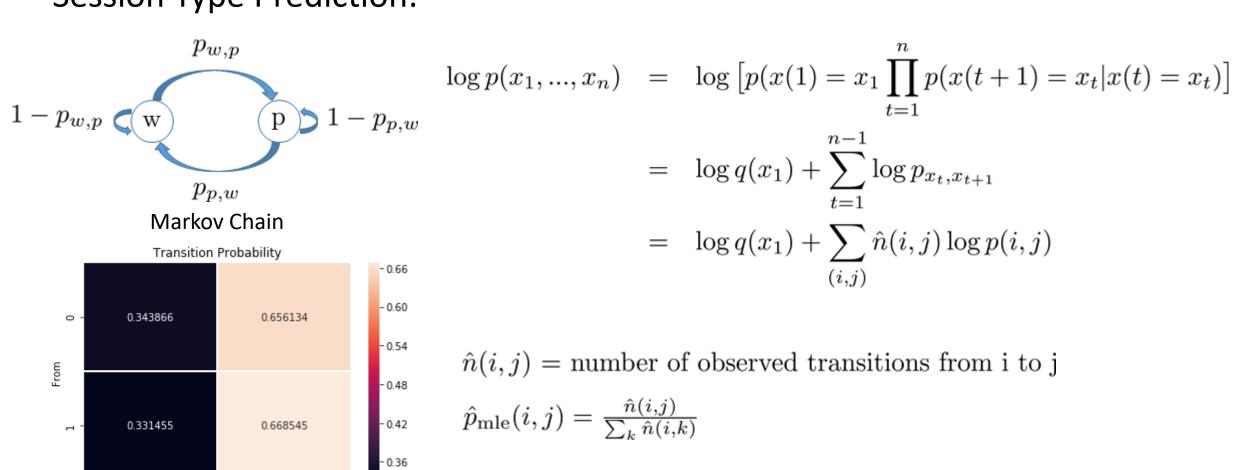
$$\frac{d}{d\lambda} p(x_{1},...,x_{n};\lambda) = n\lambda^{n-1} \exp\{-\lambda \sum x_{i}\} + \lambda^{n} \exp\{-\lambda \sum x_{i}\} \left[-\sum_{i=1}^{n} x_{i}\right] = 0$$

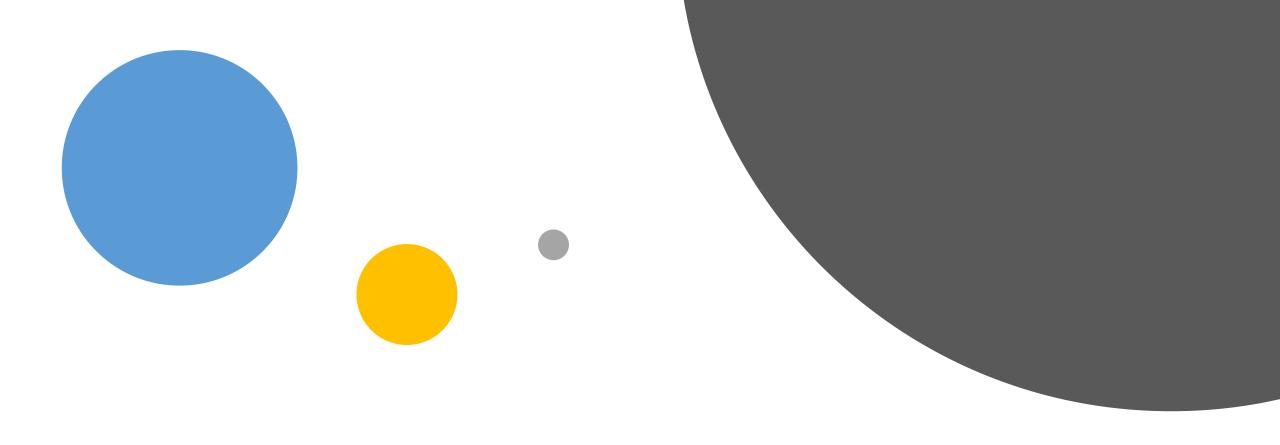
$$\hat{\lambda}_{mle} = 1/E[X_{i}] = 1/\left[\frac{1}{n} \sum_{i=1}^{n} x_{i}\right]$$

0

To

Session Type Prediction:





Vadim Smolyakov ABOUT ME

CollegeMassachusetts Institute of Technology

Computer Science and Artificial Intelligence (CSAIL) Lab

Microsoft Team Catalyst Team in Enterprise and Security (ENS)

Data Science PhD Intern

Summer in Seattle

